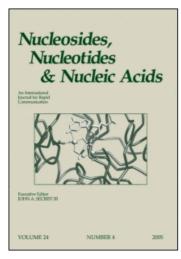
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Structural Studies on DNA Triple Helix Formed by Intronic GAA Triplet Repeat Expansion in Friedreich's Ataxia

Aklank Jain^{ab}; Faizan Ahmad^b; Moganty R. Rajeswari^a

^a Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India ^b Department of Biosciences, Jamia Millia Islamia, New Delhi, India

Online publication date: 09 August 2003

To cite this Article Jain, Aklank , Ahmad, Faizan and Rajeswari, Moganty R.(2003) 'Structural Studies on DNA Triple Helix Formed by Intronic GAA Triplet Repeat Expansion in Friedreich's Ataxia', Nucleosides, Nucleotides and Nucleic Acids, 22:5, 1517-1519

To link to this Article: DOI: 10.1081/NCN-120023024 URL: http://dx.doi.org/10.1081/NCN-120023024

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS Vol. 22, Nos. 5–8, pp. 1517–1519, 2003

Structural Studies on DNA Triple Helix Formed by Intronic GAA Triplet Repeat Expansion in Friedreich's Ataxia

Aklank Jain, 1,2 Faizan Ahmad,2 and Moganty R. Rajeswari 1,*

¹Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India ²Department of Biosciences, Jamia Millia Islamia, New Delhi, India

INTRODUCTION

It is well established that GAA/TTC base triplet expansion is the cause of degenerative disorder in Freidreich's Ataxia. It is also known that these repeat sequences fold back to form the unusual intramolecular triple helix structures in DNA of the type Pyrimidine *Purine•Pyrimidine or Purine *Purine•Pyrimidine. In this paper we report on the stability of Purine *Purine•Pyrimidine intermolecular triple helix DNA containing GAA/TTC repeats under physiological conditions. Using the oligonucleotides 5' TCGC GAA GAA GAA GAA GAA CGCT 3', 5'-AGCG TTC TTC TTC TTC GCGA-3' for duplex and 5'- AAG AAG AAG AAG AAG AAG AAG AAG -3' as triplex forming strand (TFO), we have established the formation of triplex by UV-melting temperature (Tm), and circular dichroic spectra. This was

1517

DOI: 10.1081/NCN-120023024 Copyright © 2003 by Marcel Dekker, Inc.

www.dekker.com

1525-7770 (Print); 1532-2335 (Online)

^{*}Correspondence: Moganty R. Rajeswari, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; Fax: 91-11-6862663; E-mail: mrraji@hotmail.com.

Downloaded At: 11:20 26 January 2011

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved

further confirmed by gel-retardation assay. The thermodynamic parameters ΔG , ΔH and ΔS for both duplex and triplex formation were determined at different salt concentrations. The results suggest the formation of a stable intermolecular, antiparallel triplex in GAA/TTC repeat sequences where each repeat unit contains two A*A•T and one G*G•C triplet. The therapeutic agents and TFOs, which competitively inhibit the in-vivo intra-molecular triplex by formation of a more stable inter-molecular triplex, could be used to reverse the transcription deficit in GAA/TTC expansions in Frataxin gene.

MATERIAL AND METHODS

The PAGE purified oligonucleotides 5'-TCGC (GAA)₅CGCT-3', (23 R); 5'-AGCG (CTT) ₅GCGA-3', were used to form the duplex (23Y). The (TFO) 5'-(AAG)₅-3', (15R), was added to the duplex to generate the triplex (23R:15R). Otherwise indicated all spectroscopic measurements were done in 10 mM sodium-Cacodyalte, 150 mM NaCl and 10 mM MgCl₂ at pH 7.4 and 20°C. The thermodynamic parameters were evaluated by the shape analysis two state model of the UV melting curves at different salt concentration as explained earlier.^[1]

RESULTS AND DISCUSSION

The normalized melting curves of duplex; 23RY alone and in presence of TFO; 15R and their first derivatives curves respectively were measured at 260 nm. The melting profile of the duplex alone shows a monophasic sharp melting at 73.10°C but the 1:1 mixture of 23R:15R shows biphasic melting with distinctly separate meting temperatures at 52.60°C and 73.10°C. The biphasic melting indicate that the present structure forms the triplex. The CD spectra also recorded for the duplex, 23RY alone and 1:1 ratio of 23RY:15R in SC buffer at pH 7.4 and 20°C. The calculated CD spectrum of the complex (weighted sum total of 23 RY and 15R) is significantly different from that of the experimentally measured triplex. However, the CD spectrum obtained on the experimental addition of 15R to the 23RY duplex showed strong changes; the positive band at 220 nm has disappeared while an intense negative band appeared at 210 nm. The negative band \sim 210 nm is characteristic of the triplex and generally considered as a "hall mark" for triplex formation in oligonucleotides contains GA or GT or CT repeats. [2-4] Hence the intense distinct negative band around 210 nm indicates the formation of triplex. The differential mobilities of duplex and triplex on gel retardation assay further proved the Triplex formation. The dependence of first melting of triplex to duplex, Tm₁ and second melting of duplex to single strands, Tm₂ on increasing the Na⁺ concentration was done. The triplex to duplex melting shows a stronger dependence on salt (slope = 12.44 deg/mole) than that of duplex-to-open strands (slope = 8.64 deg/mole). The enthalpy, entropy and free energy changes associated with the transitions of triplexto- duplex and duplex- to- open strands as described earlier.^[1] The enthalpy changes ΔH of triplex dissociation is much small for example, at 150 mM salt it is 48 Kcal. mol⁻¹ as compared to the duplex dissociation about 70 Kcal. mol⁻¹.

CONCLUSIONS

The interstrand triplex formed by GAA repeats is anti-parallel, quite stable under physiological conditions. The knowledge from the present study can provide an insight into the role of GAA/TTC repeats in the triplex formation. The results can be useful in developing TFOs as potential therapeutic agents which will inhibit the in-vivo triplex formation in frataxin gene so that the transcriptional inefficiency can be inhibited in FRDA.

ACKNOWLEDGMENTS

Aklank Jain would thanks to CSIR, India for providing the travel grant to attend XV International Round Table conference. The financial assistance of Department of Science and Technology is gratefully acknowledged (grant No. DST-SP/SO/D-04/99).

REFERENCES

- 1. Jain, A.; Rajeswari, M.R.; Ahmad, F. Formation and thermodynamic stability of Intermolecular (R*R.Y) DNA Triplex in GAA/TTC repeats associated with Freidreich's Ataxia. J. Biomol. Str. Dyn. **2002**, *19* (4), 691–699.
- 2. He, Y.; Scaria, P.V.; Shafer, R.H. Studies on formation and stability of the d[G(AG)5]* d[G(AG)5]. d[C(TC)5] and d[G(TG)5]* d[G(AG)5]. d[C(TC)5] triple helices. Biopolymers. **1997**, *41* (4), 431–441.
- 3. Kandimalla, E.R.; Manning, A.; Agarwal, S. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes. J. Biomol. Struct. Dyn. **1996**, *14* (1), 79–90.
- 4. Roberts, R.W.; Crothers, D.M. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science **1992**, *258* (5087), 1463–1466.